571 research outputs found

    Simulation of an Optional Strategy in the Prisoner's Dilemma in Spatial and Non-spatial Environments

    Full text link
    This paper presents research comparing the effects of different environments on the outcome of an extended Prisoner's Dilemma, in which agents have the option to abstain from playing the game. We consider three different pure strategies: cooperation, defection and abstinence. We adopt an evolutionary game theoretic approach and consider two different environments: the first which imposes no spatial constraints and the second in which agents are placed on a lattice grid. We analyse the performance of the three strategies as we vary the loner's payoff in both structured and unstructured environments. Furthermore we also present the results of simulations which identify scenarios in which cooperative clusters of agents emerge and persist in both environments.Comment: 12 pages, 8 figures. International Conference on the Simulation of Adaptive Behavio

    Cooperation and Contagion in Web-Based, Networked Public Goods Experiments

    Get PDF
    A longstanding idea in the literature on human cooperation is that cooperation should be reinforced when conditional cooperators are more likely to interact. In the context of social networks, this idea implies that cooperation should fare better in highly clustered networks such as cliques than in networks with low clustering such as random networks. To test this hypothesis, we conducted a series of web-based experiments, in which 24 individuals played a local public goods game arranged on one of five network topologies that varied between disconnected cliques and a random regular graph. In contrast with previous theoretical work, we found that network topology had no significant effect on average contributions. This result implies either that individuals are not conditional cooperators, or else that cooperation does not benefit from positive reinforcement between connected neighbors. We then tested both of these possibilities in two subsequent series of experiments in which artificial seed players were introduced, making either full or zero contributions. First, we found that although players did generally behave like conditional cooperators, they were as likely to decrease their contributions in response to low contributing neighbors as they were to increase their contributions in response to high contributing neighbors. Second, we found that positive effects of cooperation were contagious only to direct neighbors in the network. In total we report on 113 human subjects experiments, highlighting the speed, flexibility, and cost-effectiveness of web-based experiments over those conducted in physical labs

    Evaluating the Impact of an Integrated Urban Design of Transport Infrastructure and Public Space on Human Behavior and Environmental Quality: A Case Study in Beijing

    Get PDF
    Urban transport infrastructure can result in the physical, psychological and environmental separation of neighborhoods, public spaces and pedestrian networks, leading to negative impacts on citizens’ daily commutes, social activities and the quality of the ecosystem. An integrated design of transport infrastructure and public space is beneficial for mediating these negative impacts. In this paper, we propose an integrated methodology, which combines urban design, computational scenario evaluation and decision-making processes, based on a conceptual model of human and ecological needs-driven planning. To evaluate the impacts of the road network and public space design on individual outdoor activities, travel behavior and air pollution, an agent-based model is demonstrated. This model is then applied to a case study in Beijing, leading to hourly traffic volume maps and car-related air pollution heat maps of a baseline road network-public space design

    On the sustainability of credit-based P2P communities

    Full text link

    Axelrod’s metanorm games on networks

    Get PDF
    Metanorms is a mechanism proposed to promote cooperation in social dilemmas. Recent experimental results show that network structures that underlie social interactions influence the emergence of norms that promote cooperation. We generalize Axelrod’s analysis of metanorms dynamics to interactions unfolding on networks through simulation and mathematical modeling. Network topology strongly influences the effectiveness of the metanorms mechanism in establishing cooperation. In particular, we find that average degree, clustering coefficient and the average number of triplets per node play key roles in sustaining or collapsing cooperationSpanish MICINN projects CSD2010-00034 (CONSOLIDER-INGENIO 2010) and DPI2010-16920, and by the Junta de Castilla y Leo´ n, references BU034A08 and GREX251-2009

    Hypernovae and Other Black-Hole-Forming Supernovae

    Full text link
    During the last few years, a number of exceptional core-collapse supernovae (SNe) have been discovered. Their kinetic energy of the explosions are larger by more than an order of magnitude than the typical values for this type of SNe, so that these SNe have been called `Hypernovae'. We first describe how the basic properties of hypernovae can be derived from observations and modeling. These hypernovae seem to come from rather massive stars, thus forming black holes. On the other hand, there are some examples of massive SNe with only a small kinetic energy. We suggest that stars with non-rotating black holes are likely to collapse "quietly" ejecting a small amount of heavy elements (Faint supernovae). In contrast, stars with rotating black holes are likely to give rise to very energetic supernovae (Hypernovae). We present distinct nucleosynthesis features of these two types of "black-hole-forming" supernovae. Hypernova nucleosynthesis is characterized by larger abundance ratios (Zn,Co,V,Ti)/Fe and smaller (Mn,Cr)/Fe. Nucleosynthesis in Faint supernovae is characterized by a large amount of fall-back. We show that the abundance pattern of the most Fe deficient star, HE0107-5240, and other extremely metal-poor carbon-rich stars are in good accord with those of black-hole-forming supernovae, but not pair-instability supernovae. This suggests that black-hole-forming supernovae made important contributions to the early Galactic (and cosmic) chemical evolution.Comment: 49 pages, to be published in "Stellar Collapse" (Astrophysics and Space Science; Kluwer) ed. C. L. Fryer (2003
    corecore